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The simplest model of a black hole, the massive point source generating a static spherically
symmetric gravitational field, is examined using the Schwarzschild coordinate frame. A brief
review is given of this coordinate frame external to the Schwarzschild surface. Greater
attention is paid to an interpretation of this frame inside the Schwarzschild surface. Here the
roles of space and time are reversed in the sense that the external radial coordinate becomes
an internal temporal coordinate, and the external temporal coordinate becomes an internal
spatial coordinate. An internal universe is constructed from this frame, and a few simple
kinematic phenomena are described in terms of it. The internal and external coordinates are
connected graphically by using Kruskal coordinates and physically by considering the world
lines of photons and freely moving particles which transit the Schwarzschild surface.

1. INTRODUCTION

If the escape velocity of a particle at the surface of a
massive gravitating body is equal to the speed of light, no
signal can propagate from the surface to the universe out-
side the surface in any finite time as measured by clocks
fixed in the external universe. Such a body is called a black
hole. Particles, including photons, can fall into the body
from the outside, but they can never leave.

The possibility of the black hole was first proposed by
Laplace! in 1795. It is a matter of simple Newtonian me-
chanics to arrive at a connection between the critical radius
and the mass of a body which has become a black hole.
Since the escape velocity v from a spherically symmetric
gravitating body of radius » and mass M is

v2 = 2GMJr, (1.1)

when we set v = ¢, the speed of light, and solve for the cor-
responding value pf r, we obtain

R = 2GM/c2, (1.2)

where R is the critical radius of a body which is a black
hole.

Again confining the discussion to Newtonian mechanics,
we can arrive at an expression for the average density p of
the body whose radius equals R in terms of its mass:

p = 3¢%/327G3M2, (1.3)

Thus, the larger the mass of the body, the less the average
density of the black hole. Setting p equal to the density of
nuclei, we find that the corresponding critical mass is a little
less than 7 solar masses (7 Me). The corresponding radius
is about 20 km.

Since stars exist whose masses are greater than 7 Mg, it
seems likely that, if such stars in cooling and contracting
shrink to bodies whose radii approach 20 km, black holes
will be formed with densities comparable to or less than
those of neutron stars. The fact that the radii of such holes
are astronomically miniscule probably precludes our de-
tecting them directly, such as by the eclipsing of a normal
star. But indirect methods exist which even now indicate
the likelihood of the reality of black holes.2

The problem of black holes is properly formulated in the
language of general relativity and the gravitational theory
of Einstein. It is a happy accident that in the simplest
models of the black hole general relativity predicts the
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critical radii and densities to be given by Egs. (1.1) and
(1.2). But the general theory makes the black hole a far
more interesting object than does Newtonian theory, for the
general theory is concerned with the departure of the
character of space-time from the simple Euclidean-New-
tonian picture as well as with the character of gravita-
tion.

The purpose of this paper is to examine the general rel-
ativistic description of the geometry of space-time within
the black hole for the simplest case. While this geometry
has been examined many times before, it is the author’s
hope that this article will present to many readers a new
picture of the interior of the black hole which, while very
strange indeed, is nevertheless understandable and imag-
inable.’

2. OUTSIDE THE SCHWARZSCHILD
SURFACE

In the absence of a gravitational influence, the geometry
of space-time is flat in the sense that, if events E| and E,
are infinitesimally close in space and time, an infinite set
of coordinate frames exists such that the spatial and tem-
poral coordinate differences, dx, dy, dz, and dt between the
events as measured in any one of the coordinate frames, are
related by the invariant expression

de?=dx2+dy?+ dz?2 — c? dt?, 2.1

where do is the invariant interval between the events,

The character of space is differentiated from that of time
by the presence of the negative sign before the squared
temporal interval. If this sign were positive, there would be
no physical distinction between space and time. Space
would be four-dimensional and matter would be frozen in
it.

Gravitational fields warp the fabric of space-time so that
Eq. (2.1) is no longer valid. When the gravitating body is
a point source of mass M located at the origin of the coor-
dinate frame, Eq. (2.1) can be expressed, under the prin-
ciples of general relativity, as

dr?
1 - R/r
where R is defined by Eq. (1.2). If M = 0, Eq. (2.2) reduces

to Eq. (2.1) expressed in terms of spherical polar coordi-
nates, in which dQ is the element of angle between the

de? = +r2dQ2—c2dt2 (1 — R/r), (2.2)
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spatial locations of events E| and E5, and r is their radial
distance from the origin.

Since the source is a point, R does not describe its radius.
Nevertheless, R takes on the same kind of meaning here
that it had in the simple Newtonian situation. It is a critical
length, as measured in the coordinate frame used in Eq.
(2.2), which divides the universe into two distinct parts. For
values of r greater than R, the universe is very similar to the
Newtonian description of space-time at large distances
from the source of gravitation. Indeed, as r approaches in-
finity, Eq. (2.2) reduces to Eq. (2.1) expressed in spherical
polar coordinates. However, when r is finite but larger than
R, space-time departs from the Euclidean-Newtonian view
in the following two important ways.

To illustrate these ways we first pick two nonsimulta-
neous events which occur at the same place in the above
coordinated system, so that dr = 0 and dQ = 0. Then

do?= —c2dr?=—c>dt2 (1 — R/r). (2.3)

Here d is the physical time between the events, as mea-
sured say by an atomic clock located at the position of the
events. On the other hand, dt is the coordinate time between
the events. It can be shown that, if the events are observed
from a point infinitely remote from the source, the time
between them as measured by an atomic clock here is dt.
Equation (2.3) gives the well-known gravitational red shift
due to the point source. Physical time proceeds more slowly
the closer the periodically occurring phenomena are to the
source, provided r is greater than R.

Second, we pick two simultaneous events which occur
at two close but different values of » and along the same
radial direction, so that

dr?

2
TR

(2.4)

Here do is the physical distance between the events as
measured in the spatial coordinate frame, and dr is the
difference in the radii of the two concentric circles on which
the events lie, which radii are defined according to the
Euclidean rule

r = circumference/2x. 2.5)

That is, two concentric circles are further apart than the
differences in their circumferences would indicate, using
the Euclidean relationship in Eq. (2.5).

Hence the general relativistic description of space-time
in the neighborhood of a gravitating body differs from that
of Newton in that time “slows down” as one approaches the
source, and space is “warped” in that the radial distance
between circles centered at the source deviates from that
specified by Euclidean geometry.

Equation (2.2) describes the geometry of space-time in
the presence of a point source. Applying the principle of
geodesic motion* to this expression yields the equations of
motion of objects which move without interactions in this
space-time. These equations are interpreted in the general
theory as the effect of the gravitating body on the motion
of the objects. That is, a geodesic in a curved space-time
replaces gravitationally induced accelerated motion in
Newtonian space-time. The equations of motion arising
from Eq. (2.2) yield the familiar orbital trajectories of
Newtonian motion in the limit in which » approaches in-
finity. For finite r, the Newtonian equations are near ap-
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proximations of those obtained from general relativity,
provided  is still considerably larger than R.

Equation (2.2) is expressed in terms of a particular
coordinate system called the Schwarzschild coordinates
(the S coordinates).® This system is useful not only because
it reduces easily to the Newtonian approximation for large
distances r, but also because the radial coordinate is defined
in terms of the Euclidean relationship of Eq. (2.5).

The system is by no means unique. We are free to make
transformations to any other set of coordinates we might
wish to invent. However, we are cautioned that there is no
transformation which removes either the intrinsic curvature
of space-time nor the separation of space-time into two
distinct parts bounded by the surface » = R. The radius of
this surface is the radius of the black hole in this simplest
model. The surface itself is called the Schwarzschild surface
(the S surface).

Equation (2.2) fails when we set » = R, for singularities
appear which are more a fault of the choice of the coordi-
nate frame than of the geometry itself. Nevertheless, let us
examine two events located on the S surface along the same
radial direction. It is clear from Eq. (2.2) that these events
might yet be separated in space, since dr2/(1 — R/r) is
undetermined. To put it another way, two concentric great
circles can exist on the surface, whose circumferences are
each 27 R, but which are separated by the finite distance
do.

Next, let the two events merge into a single event so that
the physical distance d¢ and the physical time dr separating

‘them shrink to zero. However, the S coordinate time be-

tween them does not necessarily shrink to zero: since its
multiplying factor in Eq. (2.2) is zero, dt can be any finite
time. Thus, in § coordinates, the surface itself is frozen in
time. This statement does not mean that events cannot be
separated in physical time on the S surface. They can be.
However, if two events on the surface are separated in a
finite physical time, only one of them can occur in the
present of the S observer outside the surface. The, other
occurs either in the infinite past or infinite future.

3. INSIDE THE SCHWARZSCHILD SURFACE

When r is less than R, a remarkable change occurs in the
nature of space-time when viewed in the S framework. The
signs before the squared temporal and radial intervals in Eq.
(2.2) are reversed. Therefore, what to the outside S observer
is a radial coordinate becomes to the inside S observer a
temporal coordinate. Similarly, the temporal coordinate
for the outside S observer becomes a spatial coordinate for
the inside S observer.

The character of the universe within the S surface is
better understood if we adopt a nomenclature and sym-
bolism which reflect the physical properties of the coordi-
nates. Thus, in place of r in Eq. (2.2) we write ct, and in
place of ¢t we write z. Equation (2.2) becomes under this
“transformation”

c2de?

do?2=dz2(Tft — 1) + c2?2dQ? — ——

T/—1° G

where
T = R/c. 3.2)
It was pointed out above that there is no one given coor-
dinate frame which must be used to describe space-time.
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We shall have occasion later, for example, to introduce the
Kruskal coordinates in order to connect the geometries
within and without the S surface. But the slightly trans-
formed system given above produces a physically mean-
ingful, though strange, picture of the universe inside the
surface, and we shall consider its implications in some de-
tail.

One property of this frame, which derives from the
principle of geodetic motion, is that the equations of motion
of noninteracting objects yield solutions in which objects
at rest remain at rest. This situation is unlike that which
holds outside the surface, where objects are accelerated
(relative to the S frame of reference) toward the origin.

However, this situation does not mean that objects behave.

as though they were in an inertial frame of reference. For
if Eq. (3.1) is applied to two objects at rest and separated
at the same coordinate instant by dz, the coordinate interval
dz remains constant in coordinate time, but the physical
distance d ¢ between the objects changes in coordinate time
according to the equation

do =dz(Tjt = 1)/, (3.3)

That is, as the coordinate time advances, the physical dis-
tance separating the noninteracting objects in the z direc-
tion grows smaller.

Next let us consider Eq. (3.1) as it applies to two objects
at rest and separated at the same coordinate instant by €.
The coordinate interval d© remains constant, but the
physical distance between the objects changes in coordinate
time according to the equation

do = ct dQ. (3.4)

That is, as the coordinate time advances, the physical dis-
tance separating the noninteracting objects in the  surface
grows larger in direct proportion to the coordinate time (a
fact which can be used to measure coordinate time).

The relationship between the z axis and the Q surface is
evident from Eq. (3.1). The fact that the expression for d o2
involves only the sums of the squares of dz and 4Q implies
that all displacements given by Eq. (3.3) are physically
perpendicular to all displacements given by Eq. (3.4). The
fact that Eq. (3.4) is independent of z means that all dis-
placements given by Eq. (3.3) and originating at different
points in the Q surface are parallel to one another. In this
sense then, the @ surface is a plane. However, the spatial
geometry of this surface remains that of the surface of a
Euclidean sphere of radius ct.

Thus, the universe within the S surface is closed but
unbounded in any direction on the @ surface. The “radius”
of this surface grows in coordinate time at the rate ¢, and
its physical area increases at the rate 8xc2t. On the other
hand, the interior universe in the z direction is infinite.

We next investigate the behavior of clocks which remain
at rest in this coordinate frame. Equation (3.1) shows that
the physical time, dr, kept by such clocks is related to the
coordinate time, dt, according to

c2de?
T/t —1
The positive root of this expression can be integrated be-
tween the limits # = O and ¢ = T to give

7= Ti{x /2 — arccos(t/T)/2 ~ [(t/T)(1 — ¢/T)]'/3.
(3.6a)

ctdrl= 3.5)
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The constant of integration has been chosen so that 7 = 0
whent = 0. Whent = T, 7 = #T/2. Equation (3.6a) shows
that, while the relation between coordinate time and the
physical time kept by clocks at rest in this frame is not
simple, neither is it pathological nor grotesque. Coordinate
time ‘advances in one-to-one correspondence with the
physical time kept by rest clocks.

The negative root of Eq. (3.5) can also be integrated to
yield

7= Tix/2 + arccos(¢/T)'/2 + [(¢/T)(1 — ¢/T)] /3,
(3.6b)

sothat whent =T, 7 = #T/2, and whent =0, r = = T.
Thus, as coordinate time decreases, the physical time kept
by rest clocks increases.

It is clear that Eq. (3.1) allows two kinds of interior
worlds. In one, objects at rest in the frame move toward one-
another in the z direction and fly apart on the § surface. In
the other, objects at rest fly apart along the z direction and
move toward one another on the Q surface.

In both interior worlds the universe has a finite lifetime.
Measured by coordinate clocks it is T, and by rest clocks
it is wT/2. The evolution of these universes is accompanied
by the following development of its geometry.

Starting with Eq. (3.6a) and ¢ = 0, we have an interior
universe collapsed upon the z axis, with no extension into
the other two spatial dimensions. A singularity occurs in the
z coordinate in that, if any two events are separated by a
finite distance Ao, their z coordinates are the same. Objects
which at the beginning of this universe are a finite distance
apart immediately collapse together as the universe ages.
In order that such a collapse not occur, it is necessary that,
initially, the objects be infinitely remote from one another.
Unlike the situation which occurs at the S surface, this
pathological behavior is inherent in the structure of
space-time. It cannot be removed by a change in coordinate
frame.

The “point” source of Eq. (2.1) is not a point source in
the framework used here. Rather it is an “instant” source.
The gravitational mass M appears only at the moment ¢ =
0, distributed uniformly along the z axis. For all later mo-
ments it has vanished. That is, the universe described by Eq.
(3.1) is established by an initial condition rather than by a
boundary condition in space.

As coordinate time advances, matched by a corre-
sponding advance in the physical time of rest clocks, “rest”
objects move together along the z axis and spread out across
the Q surface. The process continues until ¢ = T, at which
moment the spatial dimension along the z direction has
vanished. All objects now lie only in the two-dimensional
Q surface, which has reached its maximum area.

We may further the evolution of the interior universe by
picking up Eq. (3.6b) and allowing coordinate time to run
backwards while the physical time of the rest clocks con-
tinues its inexorable march forward. The spatial z dimen-
sion reappears perpendicular to the Q surface, and objects
move away from one another in this direction while col-
lapsing together along the @ surface. Finally, when ¢t = 0
and r = =T, the interior universe comes to a halt. Objects
once again are stretched along the z axis, infinitely remote
from one another, and the gravitational mass which dis-
appeared after the instant of beginning reappears at the
instant of ending.

Up to now we have considered only objects at rest in the
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interior world. The principle of geodesic motion applied to
Eq. (3.1) also yields solutions which describe objects moving
freely relative to the coordinate frame. For a particle re-
stricted to the z axis but otherwise moving freely, the
equation for the local proper speed of the particle is

do____ U __
dr  (T/t — 1)'/2° \
Here U is a constant of integration, do is the physical dis-

(3.7a)

tance traveled along the z axis, and dr is the lapse of

physical time on the particle. At ¢ = 0, the speed of the
particle is zero and at ¢ = T, the speed is infinite. (The local
proper speed of light is always infinite, but it is not correct
to say, as we shall see in the next section, that the partlcle
moves at the speed of light.)

For a particle restricted to the Q surface but otherwise
moving freely, the equation for the local proper speed of the
particle is

de ¢ T()

P (3.7b)
where T is a constant of integration. At the moment of
creation the speed of the particle is infinite. But as time
advances, its speed drops until at the moment of greatest
expansion in the Q surface, its speed is ¢To/T.

Since the interior universe along the Q surface is finite
in extent, we wonder if it is possible to circumnavigate the
interior universe in its lifetime. Since the speed of light
cannot be exceeded by any physical particle, we shall ex-
amine the time taken for light to make one circuit of the
interior universe and draw our conclusions from the re-
sult.

For light signals, do = 0 in Eq. (3.1). Letting dz = Q in
Eq. (3.1), we have for the light signal confined to the Q
surface

dQ _ 1
dr [T -]/

in which we have chosen the positive root. The mtegral of
this equation is

(3.8)

/T = sin%(Q/2), (3.9)

-where the constant of integration has been chosen so that,
when Q = 0, ¢ = 0. Equation (3.9) shows that a light signal
which starts moving in the Q surface at t = 0 arrives at Q
= wrad at¢ = T. Thus the light signal moves only halfway
around the universe during its period of Q expansion.
However, it may move the other half of the distance during
the period of contraction, thereby exactly circumnavigating

the interior universe during its entire lifetime. A material -

particle would not be able to complete the journey in the
time allowed.

4. KRUSKAL COORDINATES: A GOD’S-EYE
VIEW

The S coordinate system, while suitable for giving limited
physical views of space-time inside and outside the S sur-
face, fails us if we attempt to understand what connection,
if any, can exist between the interior and exterior universes.
What happens, for example, to an object which falls or is
fired into the surface from the outside? Events on the sur-
face are frozen in time for all outside .S observers, and so
clearly no object can ever penetrate the surface from the
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point of view of the outside S observer. But is this limitation
a truly physical one, or does it arise because of an unsuitable
choice of coordinate frame?

It develops that the two universes can be connected by
objects passing back and forth through the S surface and
that coordinate frames can be used in which the singularities
found in the S coordinate frame vanish at the surface. One
such frame is that using Kruskal (K) coordinates.®

The K transformation maps the S coordinates r and ¢
(outside) and z and ¢ (inside) onto the unitless coordinates
p and g as follows:

g% = (r/R — 1) exp(r/R) cosh?(ct/2R), (4.1a)
= (r/R — 1) exp(#/R) sinh2(ct/2R), (4.1b)
which apply to the exterior universe;
g% = (1 = ¢/T) exp(t/T) sinh2(z/2cT), (4.1c)
p?2= (1 = t/T) exp(t/T) cosh?(z/2cT), (4.1d)

which apply to the interior universe. For the exterior uni-
verse the inverse transformations are

g% —p? = (r/R — 1) exp(r/R), (4.2a)
p/q = tanh{ct/2R), (4.2b)
and for the interior universe
p2—q%= (1 —¢/T) exp(t/T), (4.2c)
q/p = tanh(z/2¢T). (4.2d)

Under these transformations, the expression for the in-
variant interval of Egs. (2.2) and (3.1) for the exterior
universe becomes

do? = (4R3/r) exp(—r/R)(dq? — dp?) + r2 dQ2,
(4.3a)

and for the interior universe becomes

do? = c(4T3/t) exp(—t/T)(dg? — dp?) + c212 dQ2.
(4.3b)

Suppressing the spatial dimensions lying in the Q surface,
we can plot curves of constant r and ¢ (outside) and z and
t (inside) in a rectangular p,g plane, as shown in Fig. 1. This
is the familiar diagram displaying the relationship between
K and S coordinates.

For the exterior universe, events of constant r lie on
rectangular hyperbolas and events of constant ¢ lie on
straight lines through the origin. For the interior universe,
the roles of space and time are interchanged. Events of
constant z lie on straight lines through the origin and events
of constant ¢ lie on rectangular hyperbolas.

In terms of the exterior S frame, the origin of Fig. 1 is the
event on the S surface existing at all finite times. The as-
ymptotes of the hyperbolas are the locus of events on the S
surface whch occur either in the infinite past or infinite
future. But in terms of the interior S frame, the origin is the
event occurring at the moment of complete collapse of space
in the z direction, at ¢ = T. And the asymptotes are the locus
of events lying at the infinite extremes of the z axis and
occurringatt = T.

The equation of motion of a light signal in K coordinates
is found by setting either of Egs. (4.3) equal to zero. Again
suppressing the spatial dimensions lying in the Q surface,
we obtain
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p-axis

(t/7)

NN
\Y ,\\\\¥-———
Inside J\\_ .
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Fig. 1. In the rectangular frame of Kruskal coordinates, the curves of
constant r and ¢ (exterior) are respectively rectangular hyperbolas and
straight lines radiating from the origin. Similarly, the curves of constant
1 and z (interior) are hyperbolas and straight lines. These curves are drawn
to scale in the unitless quantities of /R, t/T (exterior), and z/R, t/T(in-
terior).

dp* = dq>. (4.4)

That is, the locus of events describing any photon is a
straight line in the p,q plane parallel to the asymptotes. An
example of such a locus, or world line, is shown in Fig. 2(a).
A photon is created in the interior world at event Egatt =
0 at a point on the z axis, say, equal to +2R. The light
propagates along the z axis in the negative direction at the
local speed of light, arriving at z = — at ¢ = T. This event,
E\, appears in the external S frame as occurring on the
surface in the infinite past. The light climbs out from the
surface and forever moves away from the gravitational
source.

It is clear that light originating in the interior universe
can enter the exterior universe. This light always leaves the
interior universe at one of two “places” (z = +«) at the
same time (¢ = T) in the view of the interior § observer. It
always appears in the exterior universe at the same place
(r = R) in the infinite past of the exterior S observer.

A second example of the world line of a photon is shown
in Fig. 2(b). Here the photon is reflected back toward the
gravitational source at event £, falling into the S surface
in the infinite future of the exterior frame at event E ;. This
event is marked in the interior S frame as the reappearance
of the photon on the z axis at positive infinity at the moment
t = T. Thus, from the point of view of the interior S ob-
server, the light disappears from the negative side of the
collapsed z axis at the moment of complete contraction only
instantly to reappear on the positive side of the z axis,
moving in the same negative direction. No time is allowed
in the interior S frame for the journey of the photon in the
exterior universe.
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The photon continues propagating along the z axis in the
negative directipn, arriving at the end of the interior uni-
verse at £4, whent = 0and z = —2R.

Photons are not the only particles which may pass from
one side of the S surface to the other. An example is shown
in Fig. 3. Here a material particle is created at event Eg at
the beginning of the interior universe. Although its initial
local proper speed is zero, its world line is governed by Eq.

. FORBIODEN

Inside

\

World line

Outside of photon

FORBIDDEN

(a)

FORBIDDEN

=T,
/ =

t=+o
/ = {r=R

13 t=0
o2 /

7 ™~ World line of
\ photon
1

NET N
Z=-m

FORBIDDEN

(b)

Fig. 2. (a) A photon is created at £ (t = 0, z = 2R) in the interior world
and moves along the negative z axis. It vanishes from the interior world
at E, (1 =T, z = —») and enters the exterior worldat £, (t = —, r =
R) and remaijns in the exterior world. (The diagram is not drawn to scale.)
(b) A photon is created at Eq (f = 0, z = 2R) in the interior world and
moves along the negative z axis. It vanishes from the interior world at £,
(=T, z= —=»)and appears in the exterior world at E, (t = =, r = R).
It is reflected at £, (t = 0, r = r|) and arrives at the Schwarzschild surface
at £1(t =+, r=R). Itenters the interior worldat E3; (1 = 7, z = + )
and moves in the negative direction along the positive z axis, arriving at
event E4 (t = 0, z = —2R), where it is destroyed. (The diagram is not
drawn to scale.)
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FORBIDDEN

=0

=T

2=t S~ t=tm
/ {r=R

Es

2

N\ ~World line of
particie

BV

FORBIDDEN

Fig. 3. A particle is created at Eq in the interior world and moves along
the negative z axis at an ever increasing local speed. It vanishes from the
interior world at E |, moving at something less than the speed of light, and
appears in the exterior world at the same event. At event E it is at its
maximal displacement from the black hole. At event £ it has returned
to the Schwarzschild surface and enters the interior world. It moves in the
negative z direction and is destroyed at event E4. (The diagram is not
drawn to scale.)

(3.7a), the equation of motion of a body freely falling along
the z axis. It arrives at the S surface at event E |, moving at
an infinite speed in the interior frame. However, an analysis
of the motion relative to the K coordinates shows that the
slope of its world line at the S surface is greater than unity.
That is, it transits the surface at less than the speed of light.
Thus it enters the exterior world in the infinitely remote past
in the S frame with an escape velocity which determines its
maximal radial displacement from the-gravitational source.
In Fig. 3, this extreme displacement is finite and occurs at
event E,. The particle then falls back toward the S surface,
arriving in the infinite future in the S frame at event E;.

Like the photon above, it reappears in the interior world
at the positive end of the z axis at the moment of total col-
lapse of the z axis. It continues moving along the z axis until
it is destroyed at event E .

Unlike the photon, the material particle may register the
lapse of time relative to itself, its so-called proper time. It
can be shown that the lapse of proper time for the journey
from Egto E) is given by

7/T = k=¥arccos(kT/T)'/? — [(kt/T)(1 — kt/T)]/3},
' (4.5a)
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where k = 1 — (U/c)?, and U < ¢. The proper time for the
journey from E| to E; is given by

/T = (Ro/R)**arccos(r/Ro)'/?
+ [(r/Ro)(1 = r/Ro)]'/4,

where Rg = R/[1 — (U/c)?], and U < ¢. Since the motion
is symmetric about event E, doubling the times given in
Eqgs. (4.5) yields the total time.

Although the exterior .S observer judges the lifetime of
the particle in the exterior world to be infinite, the lapse of
time on the particle is finite. And although the interior S
observer judges the particle instantly to disappear and
reappear at the extremes of the z axis, a clock carried by the
particle indicates a lapse of time which the interior observer
cannot account for in terms of his frame of reference.

It is emphasized that the foregoing is a model of a static
black hole due to a point source which has existed for all
external S time in an otherwise empty universe. Real black
holes may have been present at the moment of creation of
the real universe, if such ever occurred, and may now be still
with us. Or they may evolve from the gravitational collapse
of massive stars, in which case their properties are very
different from those of the simple example examined here.
Nevertheless, this model presents a fascinating picture of

(4.5b)

‘the way in which the general theory of relativity alters the

Euclidean-Newtonian fabric of space-time in an extraor-
dinary but comprehensible way.

'P. S. Laplace, Le Systéme du monde (Paris, 1795), Vol. 2, p. 305; C.
Misner, K. Thorne, and J. Wheeler, Gravitation (Freeman, San
Francisco, 1973), pp. 623 and 872.

2The best known candidate for a black hole is the x-ray source, Cygnus
X-1, a double star whose luminous member is a blue giant (spectral
classification B, on the main sequence). The invisible member has a mass
calculated to be at least 8 Mg and is the source of x rays. These are as-
sumed to be generated as gasses surrounding the source are drawn into
the source and compressed. See Ref. 1, Misner et al., p. 885.

3The black hole is amply treated in the literature, and no attempt is made
here to refer to all articles on the subject. The few citations here contain
thorough bibliographies: R. Ruffini and J. Wheeler, Phys. Today 24
(12), 30 (1971); P. C. Peters, Am. Sci. 62, 575 (1974); Ref. 1, Misner
et al., Chap. 33.

4For an excellent discussion of the principle of geodesic motion at the in-
troductory level, see K. Ford, Classical and Modern Physics (Xerox
College Publishing, l',cxington, MA, 1974), Vol. 3, p. 1103 ff.

5K. Schwarzschild, Dtsch. Akad. Wiss. Berlin, 189-196 (1916); C. Mglier,
The Theory of Relativity (Oxford U. P., London, 1952), p. 324 ff; J.
Anderson, Principles of Relativity Physics (Academic, New York,
1967), p. 381 ff.

6M. D. Kruskal, Phys. Rev. 119, 1743 (1960); G. Szekeres, Publ. Mat.
Debrecen 7, 285 (1960); Ref. 1, Misner et al., p. 827 ff.
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